Axial arrangement of the myosin rod in vertebrate thick filaments: immunoelectron microscopy with a monoclonal antibody to light meromyosin
نویسندگان
چکیده
A monoclonal antibody, MF20, which has been shown previously to bind the myosin heavy chain of vertebrate striated muscle, has been proven to bind the light meromyosin (LMM) fragment by solid phase radioimmune assay with alpha-chymotryptic digests of purified myosin. Epitope mapping by electron microscopy of rotary-shadowed, myosin-antibody complexes has localized the antibody binding site to LMM at a point approximately 92 nm from the C-terminus of the myosin heavy chain. Since this epitope in native thick filaments is accessible to monoclonal antibodies, we used this antibody as a high affinity ligand to analyze the packing of LMM along the backbone of the thick filament. By immunofluorescence microscopy, MF20 was shown to bind along the entire A-band of chicken pectoralis myofibrils, although the epitope accessibility was greater near the ends than at the center of the A-bands. Thin-section, transmission electron microscopy of myofibrils decorated with MF20 revealed 50 regularly spaced, cross-striations in each half A-band, with a repeat distance of approximately 13 nm. These were numbered consecutively, 1-50, from the A-band to the last stripe, approximately 68 nm from the filament tips. These same striations could be visualized by negative staining of native thick filaments labeled with MF20. All 50 striations were of a consecutive, uninterrupted repeat which approximated the 14-15-nm axial translation of cross-bridges. Each half M-region contained five MF20 striations (approximately 13 nm apart) with a distance between stripes 1 and 1', on each half of the bare zone, of approximately 18 nm. This is compatible with a packing model with full, antiparallel overlap of the myosin rods in the bare zone region. Differences in the spacings measured with negatively stained myofilaments and thin-sectioned myofibrils have been shown to arise from specimen shrinkage in the fixed and embedded preparations. These observations provide strong support for Huxley's original proposal for myosin packing in thick filaments of vertebrate muscle (Huxley, H. E., 1963, J. Mol. Biol., 7:281-308) and, for the first time, directly demonstrate that the 14-15-nm axial translation of LMM in the thick filament backbone corresponds to the cross-bridge repeat detected with x-ray diffraction of living muscle.
منابع مشابه
Localization and topography of antigenic domains within the heavy chain of smooth muscle myosin
We have produced and characterized monoclonal antibodies that label antigenic determinants distributed among three distinct, nonoverlapping peptide domains of the 200-kD heavy chain of avian smooth muscle myosin. Mice were immunized with a partially phosphorylated chymotryptic digest of adult turkey gizzard myosin. Hybridoma antibody specificities were determined by solid-phase indirect radioim...
متن کاملMonoclonal antibodies detect and stabilize conformational states of smooth muscle myosin
Antibodies with epitopes near the heavy meromyosin/light meromyosin junction distinguish the folded from the extended conformational states of smooth muscle myosin. Antibody 10S.1 has 100-fold higher avidity for folded than for extended myosin, while antibody S2.2 binds preferentially to the extended state. The properties of these antibodies provide direct evidence that the conformation of the ...
متن کاملDistribution of fast myosin heavy chain isoforms in thick filaments of developing chicken pectoral muscle
Colloidal gold-conjugated monoclonal antibodies were prepared to stage-specific fast myosin heavy chain (MHC) isoforms of developing chicken pectoralis major (PM). Native thick filaments from different stages of development were reacted with these antibodies and examined in the electron microscope to determine their myosin isoform composition. Filaments prepared from 12-d embryo, 10-d chick, an...
متن کاملSome Aspects of the Structural Organization of the Myofibril as Revealed by Antibody-staining Methods
FROM OBSERVATIONS OF FLUORESCENT ANTIBODY STAINING AND ANTIBODY STAINING IN ELECTRON MICROSCOPY, EVIDENCE IS PRESENTED FOR THE FOLLOWING: (a) Direct contact of the actin and myosin filaments occurs at all stages of contraction. This results in inhibition of antibody staining of the H-meromyosin portion of the myosin molecule in the region of overlap of the thin and thick filaments. (b) Small st...
متن کاملA composite approach towards a complete model of the myosin rod.
Sarcomeric myosins have the remarkable ability to form regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. This has been established for over 50 years and yet a molecular model for the thick filament has not been attained. In part this is due to the lack of a detailed molecular model for the coiled...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 101 شماره
صفحات -
تاریخ انتشار 1985